## Table Of Derivatives

Rules On Differentiation Product Rule: $$\frac{d}{dx} \left( uv \right) = v \frac{du}{dx} + u \frac{dv}{dx}$$ ,where u, v are functions of x Quotient Rule: $$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v\frac{du}{dx} – u \frac{dv}{dx}}{v^{2}}$$ Chain Rule: $$\frac{d}{dx} \left[ f\left(u \right) \right] = \frac{d}{du} \left[ f \left( u \right) \right] \times \frac{du}{dx}$$ Integration By Parts: $$\int \! u \, \text{d}v = uv-\int \! …