A quick guide on how to read a micrometer screw gauge. Similar to the way a vernier caliper is read, a micrometer reading contains two parts:

- the first part is contributed by the main scale on the sleeve
- the second part is contributed by the rotating vernier scale on the thimble

**Sponsored Link**: Want to play around with a real micrometer screw gauge? Click here to get from Amazon!

## Measurement Reading Technique For Micrometer

The above image shows a typical micrometer screw gauge and how to read it. Steps:

- To obtain the first part of the measurement: Look at the image above, you will see a number 5 to the immediate left of the thimble. This means 5.0 mm. Notice that there is an extra line below the datum line, this represents an additional 0.5 mm. So the first part of the measurement is $5.0 + 0.5 = 5.5$ mm.
- To obtain the second part of the measurement: Look at the image above, the number 28 on the rotating vernier scale coincides with the datum line on the sleeve. Hence, 0.28 mm is the second part of the measurement.

You just have to add the first part and second part of the measurement to obtain the micrometer reading: $5.5 + 0.28 = 5.78$ mm.

To ensure that you understand the steps above, here’s one more example:

First part of the measurement: 2.5 mm

Second part of the measurement: 0.38 mm

Final measurement: 2.88 mm

## Compensating For Zero Error

### In a nutshell

Use the following formula:

$$\text{Correct reading} = \text{Obtained reading} \, – \, \text{Zero error}$$

where $\text{zero error}$ can be either **negative** (the “0” marking on the thimble is **above** the datum line) or **positive** ( the “0” marking on the thimble is **below** the datum line )

### Explanation

Now, we shall try with zero error. If you are not familiar on how to handle zero error for micrometer screw gauge, I suggest that you read up on Measurement of Length.

The reading on the bottom is the measurement obtained and the reading at the top is the zero error. Find the actual measurement. (Meaning: get rid of the zero error in the measurement or take into account the zero error)

Measurement with zero error: 1.76 mm

Zero error: + 0.01 mm (positive because the zero marking on the thimble is below the datum line)

Measurement without zero error: $1.76 \, – (+ 0.01) = 1.75$ mm

The subtraction logic is similar to the method explained in How to read a vernier caliper. You can take a look and comment below, if you encounter any difficulties.

### Self-Test Questions

**What is the smallest possible reading (in mm) on the thimble scale? What is the biggest possible reading?**

**Show/Hide Answer**

The smallest possible reading on the thimble scale is 0.01 mm, while the biggest possible reading is 0.49 mm.

If you still do not understand the concept, there is a **very useful** simulation of the micrometer screw gauge here.

**Bonus:** You can get this micrometer app on your mobile phone (Android): https://www.miniphysics.com/link/micrometerapp

I have seen this particular question (same picture) about a micrometer in the exam but the answer 2.88 mm was not in the choices. How is that?

A really helpful site to get going with the concepts.

You guys just made is a smple as this

Need some explanation on how to get the zero errors… Thank you.

its usually caused by faulty instruments

Thankyou.Easy to understand.

My homework really confused me since we had never been taught how to do this ‘zero error thing’. Your assistance was a great relief.

Thanks alot😄

exactly

am confidently sure that,am gonna pass my exam tomorrow, thanks for this,you made it so simple for a one day baby to understand🙏