Hyperbolic Functions



Useful Hyperbolic functions references:

Hyperbolic Identities:

$$\cosh^{2}{u}-\sinh^{2}{u} = 1$$

$$1-\text{tanh}^{2} u = \text{sech}^{2}u$$

$$\text{coth}^{2} u-1 = \text{cosech}^{2} u$$

$$\sinh{\left(x \pm y \right)} = \sinh{x}\cosh{y} \pm \cosh{x}\sinh{y}$$

$$\cosh{\left(x \pm y \right)} = \cosh{x}\cosh{y} \pm \sinh{x}\sinh{y}$$

$$\sinh{2u} = 2 \sinh{u}\cosh{u}$$

$$\begin{aligned} \cosh{2u} &= \cosh^{2}{u} + \sinh^{2}{u} \\ &= 2 \cosh^{2}{u}-1 \\ &= 1 + 2\sinh^{2}{u} \end{aligned}$$

Relation between inverse hyperbolic functions and natural logarithms:

$$\sinh^{-1}{u} = \text{ln} \left( u + \sqrt{u^{2} +1} \right) \,\,\,\, \text{for all } u$$

$$\cosh^{-1}{u} = \text{ln} \left( u + \sqrt{u^{2} -1} \right) \,\,\,\, \text{for all } u$$

$$\text{tanh}^{-1} u = \frac{1}{2}\text{ln} \left( \frac{1+u}{1-u} \right) \,\,\,\, \text{for } |u| < 1$$

$$\text{coth}^{-1} u = \frac{1}{2} \text{ln} \left( \frac{u+1}{u-1} \right) \,\,\,\, \text{for } |u| > 1$$

$$\text{sech}^{-1} u = \text{ln} \left( \frac{1+\sqrt{1-u^{2}}}{u} \right) \,\,\,\, \text{for } 0 < u \le 1$$

$$\text{cosech}^{-1} u = \text{ln} \left( \frac{1}{u} + \frac{\sqrt{1+u^{2}}}{|u|}\right) \,\,\,\, \text{for } u \neq 0$$

Some extra things:

$$\cosh{x} = \frac{e^{x} + e^{-x}}{2}$$

$$\sinh{x} = \frac{e^{x}-e^{-x}}{2}$$

Back To Useful Mathematics References



Mini Physics

Administrator of Mini Physics. If you spot any errors or want to suggest improvements, please contact us. If you like the content in this site, please recommend this site to your friends!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.