# Integration Table

## Table Of Basic Integrals

### Basic Forms

\int x^n dx = \frac{1}{n+1}x^{n+1},\hspace{1ex}n\neq -1

\int \frac{1}{x}dx = \ln |x|

\int u dv = uv – \int v du

\int \frac{1}{ax+b}dx = \frac{1}{a} \ln |ax + b|

### Integrals of Rational Functions

\int \frac{1}{(x+a)^2}dx = -\frac{1}{x+a}

\int (x+a)^n dx = \frac{(x+a)^{n+1}}{n+1}, n\ne -1

\int x(x+a)^n dx = \frac{(x+a)^{n+1} ( (n+1)x-a)}{(n+1)(n+2)}

\int \frac{1}{1+x^2}dx = \tan^{-1}x

\int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a}

\int \frac{x}{a^2+x^2}dx = \frac{1}{2}\ln|a^2+x^2|

\int \frac{x^2}{a^2+x^2}dx = x-a\tan^{-1}\frac{x}{a}

\int \frac{x^3}{a^2+x^2}dx = \frac{1}{2}x^2-\frac{1}{2}a^2\ln|a^2+x^2|

\int \frac{1}{ax^2+bx+c}dx = \frac{2}{\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}

\int \frac{1}{(x+a)(x+b)}dx = \frac{1}{b-a}\ln\frac{a+x}{b+x}, \text{ } a\ne b

\int \frac{x}{(x+a)^2}dx = \frac{a}{a+x}+\ln |a+x|

\int \frac{x}{ax^2+bx+c}dx = \frac{1}{2a}\ln|ax^2+bx+c|
-\frac{b}{a\sqrt{4ac-b^2}}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}

### Integrals with Roots

\int \sqrt{x-a}\ dx = \frac{2}{3}(x-a)^{3/2}

\int \frac{1}{\sqrt{x\pm a}}\ dx = 2\sqrt{x\pm a}

\label{eq:Rigo}
\int \frac{1}{\sqrt{a-x}}\ dx = -2\sqrt{a-x}

\label{eq:Gilmore}
\int x\sqrt{x-a}\ dx =
\left\{
\begin{array}{l}
\frac{2 a}{3} \left({x-a}\right)^{3/2} +\frac{2 }{5}\left( {x-a}\right)^{5/2},\text{ or}
\\ \frac{2}{3} x(x-a)^{3/2} – \frac{4}{15} (x-a)^{5/2}, \text{ or}
\\ \frac{2}{15}(2a+3x)(x-a)^{3/2}
\end{array}
\right.

\int \sqrt{ax+b}\ dx = \left(\frac{2b}{3a}+\frac{2x}{3}\right)\sqrt{ax+b}

\int (ax+b)^{3/2}\ dx =\frac{2}{5a}(ax+b)^{5/2}

\label{eq:Weems}
\int \frac{x}{\sqrt{x\pm a} } \ dx = \frac{2}{3}(x\mp 2a)\sqrt{x\pm a}

\int \sqrt{\frac{x}{a-x}}\ dx = -\sqrt{x(a-x)}
-a\tan^{-1}\frac{\sqrt{x(a-x)}}{x-a}

\int \sqrt{\frac{x}{a+x}}\ dx = \sqrt{x(a+x)}
-a\ln \left [ \sqrt{x} + \sqrt{x+a}\right]

\int x \sqrt{ax + b}\ dx =
\frac{2}{15 a^2}(-2b^2+abx + 3 a^2 x^2)
\sqrt{ax+b}

\int \sqrt{x(ax+b)}\ dx = \frac{1}{4a^{3/2}}\left[(2ax + b)\sqrt{ax(ax+b)}
-b^2 \ln \left| a\sqrt{x} + \sqrt{a(ax+b)} \right| \right ]

\int \sqrt{x^3(ax+b)} \ dx =\left [
\frac{b}{12a}-
\frac{b^2}{8a^2x}+
\frac{x}{3}\right]
\sqrt{x^3(ax+b)} +
\frac{b^3}{8a^{5/2}}\ln \left | a\sqrt{x} + \sqrt{a(ax+b)} \right |

\int\sqrt{x^2 \pm a^2}\ dx = \frac{1}{2}x\sqrt{x^2\pm a^2}
\pm\frac{1}{2}a^2 \ln \left | x + \sqrt{x^2\pm a^2} \right |

\int \sqrt{a^2 – x^2}\ dx = \frac{1}{2} x \sqrt{a^2-x^2}
+\frac{1}{2}a^2\tan^{-1}\frac{x}{\sqrt{a^2-x^2}}

\int x \sqrt{x^2 \pm a^2}\ dx= \frac{1}{3}\left ( x^2 \pm a^2 \right)^{3/2}

\int \frac{1}{\sqrt{x^2 \pm a^2}}\ dx = \ln \left | x + \sqrt{x^2 \pm a^2} \right |

\int \frac{1}{\sqrt{a^2 – x^2}}\ dx = \sin^{-1}\frac{x}{a}

\int \frac{x}{\sqrt{x^2\pm a^2}}\ dx = \sqrt{x^2 \pm a^2}

\int \frac{x}{\sqrt{a^2-x^2}}\ dx = -\sqrt{a^2-x^2}

\label{eq:Russ}
\int \frac{x^2}{\sqrt{x^2 \pm a^2}}\ dx = \frac{1}{2}x\sqrt{x^2 \pm a^2}
\mp \frac{1}{2}a^2 \ln \left| x + \sqrt{x^2\pm a^2} \right |

\label{eq:Winokur1}
\int \sqrt{a x^2 + b x + c}\ dx =
\frac{b+2ax}{4a}\sqrt{ax^2+bx+c}
+
\frac{4ac-b^2}{8a^{3/2}}\ln \left| 2ax + b + 2\sqrt{a(ax^2+bx^+c)}\right |

\label{eq:Larry-Morris}\begin{split}
\int &x \sqrt{a x^2 + bx + c}\ dx = \frac{1}{48a^{5/2}}\left (
2 \sqrt{a} \sqrt{ax^2+bx+c}
\right .
\left( – 3b^2 + 2 abx + 8 a(c+ax^2) \right)
\\ & \left.
+ 3(b^3-4abc)\ln \left|b + 2ax + 2\sqrt{a}\sqrt{ax^2+bx+c} \right| \right)
\end{split}

\int\frac{1}{\sqrt{ax^2+bx+c}}\ dx=
\frac{1}{\sqrt{a}}\ln \left| 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right |

\label{eq:Duley}
\int \frac{x}{\sqrt{ax^2+bx+c}}\ dx=
\frac{1}{a}\sqrt{ax^2+bx + c}

\frac{b}{2a^{3/2}}\ln \left| 2ax+b + 2 \sqrt{a(ax^2+bx+c)} \right |

\label{eq:Winokur2}
\int\frac{dx}{(a^2+x^2)^{3/2}}=\frac{x}{a^2\sqrt{a^2+x^2}}

### Integrals with Logarithms

\int \ln ax\ dx = x \ln ax – x

\int x \ln x \ dx = \frac{1}{2} x^2 \ln x-\frac{x^2}{4}

\int x^2 \ln x \ dx = \frac{1}{3} x^3 \ln x-\frac{x^3}{9}

\int x^n \ln x\ dx = x^{n+1}\left( \dfrac{\ln x}{n+1}-\dfrac{1}{(n+1)^2}\right),\hspace{2ex} n\neq -1

\int \frac{\ln ax}{x}\ dx = \frac{1}{2}\left ( \ln ax \right)^2

\int \frac{\ln x}{x^2}\ dx = -\frac{1}{x}-\frac{\ln x}{x}

\int \ln (ax + b) \ dx = \left ( x + \frac{b}{a} \right) \ln (ax+b) – x , a\ne 0

\int \ln ( x^2 + a^2 )\hspace{.5ex} {dx} = x \ln (x^2 + a^2 ) +2a\tan^{-1} \frac{x}{a} – 2x

\int \ln ( x^2 – a^2 )\hspace{.5ex} {dx} = x \ln (x^2 – a^2 ) +a\ln \frac{x+a}{x-a} – 2x

\int \ln \left ( ax^2 + bx + c\right) \ dx = \frac{1}{a}\sqrt{4ac-b^2}\tan^{-1}\frac{2ax+b}{\sqrt{4ac-b^2}}
-2x + \left( \frac{b}{2a}+x \right )\ln \left (ax^2+bx+c \right)

\int x \ln (ax + b)\ dx = \frac{bx}{2a}-\frac{1}{4}x^2
+\frac{1}{2}\left(x^2-\frac{b^2}{a^2}\right)\ln (ax+b)

\int x \ln \left ( a^2 – b^2 x^2 \right )\ dx = -\frac{1}{2}x^2+
\frac{1}{2}\left( x^2 – \frac{a^2}{b^2} \right ) \ln \left (a^2 -b^2 x^2 \right)

\int (\ln x)^2\ dx = 2x – 2x \ln x + x (\ln x)^2

\int (\ln x)^3\ dx = -6 x+x (\ln x)^3-3 x (\ln x)^2+6 x \ln x

\int x (\ln x)^2\ dx = \frac{x^2}{4}+\frac{1}{2} x^2 (\ln x)^2-\frac{1}{2} x^2 \ln x

\int x^2 (\ln x)^2\ dx = \frac{2 x^3}{27}+\frac{1}{3} x^3 (\ln x)^2-\frac{2}{9} x^3 \ln x

### Integrals with Exponentials

\int e^{ax}\ dx = \frac{1}{a}e^{ax}

\label{eq:ajoy}
\int \sqrt{x} e^{ax}\ dx = \frac{1}{a}\sqrt{x}e^{ax}
+\frac{i\sqrt{\pi}}{2a^{3/2}}
\text{erf}\left(i\sqrt{ax}\right),
\text{ where erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}dt

\int x e^x\ dx = (x-1) e^x

\int x e^{ax}\ dx = \left(\frac{x}{a}-\frac{1}{a^2}\right) e^{ax}

\int x^2 e^{x}\ dx = \left(x^2 – 2x + 2\right) e^{x}

\int x^2 e^{ax}\ dx = \left(\frac{x^2}{a}-\frac{2x}{a^2}+\frac{2}{a^3}\right) e^{ax}

\int x^3 e^{x}\ dx = \left(x^3-3x^2 + 6x – 6\right) e^{x}

\label{eq:swift1}
\int x^n e^{ax}\ dx = \dfrac{x^n e^{ax}}{a} –
\dfrac{n}{a}\int x^{n-1}e^{ax}\hspace{1pt}\text{d}x

\label{eq:ebke}
\int x^n e^{ax}\ dx = \frac{(-1)^n}{a^{n+1}}\Gamma[1+n,-ax],
\text{ where } \Gamma(a,x)=\int_x^{\infty} t^{a-1}e^{-t}\hspace{2pt}\text{d}t

\label{eq:swift2}
\int e^{ax^2}\ dx = -\frac{i\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(ix\sqrt{a}\right)

\label{eq:swift3}
\int e^{-ax^2}\ dx = \frac{\sqrt{\pi}}{2\sqrt{a}}\text{erf}\left(x\sqrt{a}\right)

\label{eq:qarles1}
\int x e^{-ax^2}\ {dx} = -\dfrac{1}{2a}e^{-ax^2}

\label{eq:qarles2}
\int x^2 e^{-ax^2}\ {dx} = \dfrac{1}{4}\sqrt{\dfrac{\pi}{a^3}}\text{erf}(x\sqrt{a}) -\dfrac{x}{2a}e^{-ax^2}

### Integrals with Trigonometric Functions

\int \sin ax \ dx = -\frac{1}{a} \cos ax

\int \sin^2 ax\ dx = \frac{x}{2} – \frac{\sin 2ax} {4a}

\int \sin^3 ax \ dx = -\frac{3 \cos ax}{4a} + \frac{\cos 3ax} {12a}

\int \sin^n ax \ dx =
-\frac{1}{a}{\cos ax} \hspace{2mm}{_2F_1}\left[
\frac{1}{2}, \frac{1-n}{2}, \frac{3}{2}, \cos^2 ax
\right]

\int \cos ax\ dx= \frac{1}{a} \sin ax

\int \cos^2 ax\ dx = \frac{x}{2}+\frac{ \sin 2ax}{4a}

\int \cos^3 ax dx = \frac{3 \sin ax}{4a}+\frac{ \sin 3ax}{12a}

\int \cos^p ax dx = -\frac{1}{a(1+p)}{\cos^{1+p} ax} \times
{_2F_1}\left[
\frac{1+p}{2}, \frac{1}{2}, \frac{3+p}{2}, \cos^2 ax
\right]

\label{eq:veky}
\int \cos x \sin x\ dx = \frac{1}{2}\sin^2 x + c_1 = -\frac{1}{2} \cos^2x + c_2 = -\frac{1}{4} \cos 2x + c_3

\int \cos ax \sin bx\ dx = \frac{\cos[(a-b) x]}{2(a-b)} –
\frac{\cos[(a+b)x]}{2(a+b)} , a\ne b

\int \sin^2 ax \cos bx\ dx =
-\frac{\sin[(2a-b)x]}{4(2a-b)}
+ \frac{\sin bx}{2b}
– \frac{\sin[(2a+b)x]}{4(2a+b)}

\int \sin^2 x \cos x\ dx = \frac{1}{3} \sin^3 x

\int \cos^2 ax \sin bx\ dx = \frac{\cos[(2a-b)x]}{4(2a-b)}
– \frac{\cos bx}{2b}
– \frac{\cos[(2a+b)x]}{4(2a+b)}

\int \cos^2 ax \sin ax\ dx = -\frac{1}{3a}\cos^3{ax}

\int \sin^2 ax \cos^2 bx dx = \frac{x}{4}
-\frac{\sin 2ax}{8a}-
\frac{\sin[2(a-b)x]}{16(a-b)}
+\frac{\sin 2bx}{8b}-
\frac{\sin[2(a+b)x]}{16(a+b)}

\int \sin^2 ax \cos^2 ax\ dx = \frac{x}{8}-\frac{\sin 4ax}{32a}

\int \tan ax\ dx = -\frac{1}{a} \ln \cos ax

\int \tan^2 ax\ dx = -x + \frac{1}{a} \tan ax

\int \tan^n ax\ dx =
\frac{\tan^{n+1} ax }{a(1+n)} \times
{_2}F_1\left( \frac{n+1}{2},
1, \frac{n+3}{2}, -\tan^2 ax \right)

\int \tan^3 ax dx = \frac{1}{a} \ln \cos ax + \frac{1}{2a}\sec^2 ax

\int \sec x \ dx = \ln | \sec x + \tan x | = 2 \tanh^{-1} \left (\tan \frac{x}{2} \right)

\int \sec^2 ax\ dx = \frac{1}{a} \tan ax

\label{eq:Kloeppel}
\int \sec^3 x \ {dx} = \frac{1}{2} \sec x \tan x + \frac{1}{2}\ln | \sec x + \tan x |

\int \sec x \tan x\ dx = \sec x

\int \sec^2 x \tan x\ dx = \frac{1}{2} \sec^2 x

\int \sec^n x \tan x \ dx = \frac{1}{n} \sec^n x , n\ne 0

\int \csc x\ dx = \ln \left | \tan \frac{x}{2} \right| = \ln | \csc x – \cot x| + C

\int \csc^2 ax\ dx = -\frac{1}{a} \cot ax

\int \csc^3 x\ dx = -\frac{1}{2}\cot x \csc x + \frac{1}{2} \ln | \csc x – \cot x |

\int \csc^nx \cot x\ dx = -\frac{1}{n}\csc^n x, n\ne 0

\int \sec x \csc x \ dx = \ln | \tan x |

### Products of Trigonometric Functions and Monomials

\int x \cos x \ dx = \cos x + x \sin x

\int x \cos ax \ dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax

\int x^2 \cos x \ dx = 2 x \cos x + \left ( x^2 – 2 \right ) \sin x

\int x^2 \cos ax \ dx = \frac{2 x \cos ax }{a^2} + \frac{ a^2 x^2 – 2 }{a^3} \sin ax

\int x^n \cos x dx =
-\frac{1}{2}(i)^{n+1}\left [ \Gamma(n+1, -ix)
+ (-1)^n \Gamma(n+1, ix)\right]

\int x^n \cos ax \ dx =
\frac{1}{2}(ia)^{1-n}\left [ (-1)^n \Gamma(n+1, -iax)
-\Gamma(n+1, ixa)\right]

\int x \sin x\ dx = -x \cos x + \sin x

\int x \sin ax\ dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2}

\int x^2 \sin x\ dx = \left(2-x^2\right) \cos x + 2 x \sin x

\int x^2 \sin ax\ dx =\frac{2-a^2x^2}{a^3}\cos ax +\frac{ 2 x \sin ax}{a^2}

\label{eq:xul}
\int x^n \sin x \ dx = -\frac{1}{2}(i)^n\left[ \Gamma(n+1, -ix)
– (-1)^n\Gamma(n+1, -ix)\right]

\int x \cos^2 x \ dx = \frac{x^2}{4}+\frac{1}{8}\cos 2x + \frac{1}{4} x \sin 2x

\int x \sin^2 x \ dx = \frac{x^2}{4}-\frac{1}{8}\cos 2x – \frac{1}{4} x \sin 2x

\int x \tan^2 x \ dx = -\frac{x^2}{2} + \ln \cos x + x \tan x

\int x \sec^2 x \ dx = \ln \cos x + x \tan x

### Products of Trigonometric Functions and Exponentials

\int e^x \sin x \ dx = \frac{1}{2}e^x (\sin x – \cos x)

\label{eq:ritzert}
\int e^{bx} \sin ax\ dx = \frac{1}{a^2+b^2}e^{bx} (b\sin ax – a\cos ax)

\int e^x \cos x\ dx = \frac{1}{2}e^x (\sin x + \cos x)

\int e^{bx} \cos ax\ dx = \frac{1}{a^2 + b^2} e^{bx} ( a \sin ax + b \cos ax )

\int x e^x \sin x\ dx = \frac{1}{2}e^x (\cos x – x \cos x + x \sin x)

\int x e^x \cos x\ dx = \frac{1}{2}e^x (x \cos x
– \sin x + x \sin x)

### Integrals of Hyperbolic Functions

\int \cosh ax\ dx =\frac{1}{a} \sinh ax

\int e^{ax} \cosh bx \ dx =
\begin{cases}
\displaystyle{\frac{e^{ax}}{a^2-b^2} }[ a \cosh bx – b \sinh bx ] & a\ne b \\
\displaystyle{\frac{e^{2ax}}{4a} + \frac{x}{2}} & a = b
\end{cases}

\int \sinh ax\ dx = \frac{1}{a} \cosh ax

\int e^{ax} \sinh bx \ dx =
\begin{cases}
\displaystyle{\frac{e^{ax}}{a^2-b^2} }[ -b \cosh bx + a \sinh bx ] & a\ne b \\
\displaystyle{\frac{e^{2ax}}{4a} – \frac{x}{2}} & a = b
\end{cases}

\label{eq:yates}
\int \tanh ax\hspace{1.5pt} dx =\frac{1}{a} \ln \cosh ax

\label{eq:dewitt}
\int e^{ax} \tanh bx\ dx =
\begin{cases}
\displaystyle{ \frac{ e^{(a+2b)x}}{(a+2b)}
{_2F_1}\left[ 1+\frac{a}{2b},1,2+\frac{a}{2b}, -e^{2bx}\right] }& \\
\displaystyle{
\hspace{1cm}-\frac{1}{a}e^{ax}{_2F_1}\left[ 1, \frac{a}{2b},1+\frac{a}{2b}, -e^{2bx}\right]
}
& a\ne b \\
\displaystyle{\frac{e^{ax}-2\tan^{-1}[e^{ax}]}{a} } & a = b
\end{cases}

\int \cos ax \cosh bx\ dx =
\frac{1}{a^2 + b^2} \left[
a \sin ax \cosh bx + b \cos ax \sinh bx
\right]

\int \cos ax \sinh bx\ dx =
\frac{1}{a^2 + b^2} \left[
b \cos ax \cosh bx +
a \sin ax \sinh bx
\right]

\int \sin ax \cosh bx \ dx =
\frac{1}{a^2 + b^2} \left[
-a \cos ax \cosh bx +
b \sin ax \sinh bx
\right]

\int \sin ax \sinh bx \ dx =
\frac{1}{a^2 + b^2} \left[
b \cosh bx \sin ax –
a \cos ax \sinh bx
\right]

\int \sinh ax \cosh ax dx=
\frac{1}{4a}\left[
-2ax + \sinh 2ax \right]

\int \sinh ax \cosh bx \ dx =
\frac{1}{b^2-a^2}\left[
b \cosh bx \sinh ax
– a \cosh ax \sinh bx \right]

## Useful Integral Results For Mechanics

$$\int\limits^{+ \infty}_{- \infty} e^{-ax^{2}} = \sqrt{\frac{\pi}{a}}$$

$$\int\limits^{+ \infty}_{- \infty}x^{2n} e^{-ax^{2}} = (-1)^{n} \frac{\partial^{n}}{\partial a^{n}}\sqrt{\frac{\pi}{a}}$$

$$\int\limits^{+ \infty}_{- \infty} e^{-ax^{2} + bx} = e^{\frac{b^2}{4a}}\sqrt{\frac{\pi}{a}}$$

$$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x^{2} \sin^2 \left( \frac{n \pi x}{a} \right) = \frac{1}{24} a^{3} \left( 1 – \frac{6(-1)^n}{n^2 \pi^2} \right)$$

$$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x^{2} \cos^2 \left( \frac{n \pi x}{a} \right) = \frac{1}{24} a^{3} \left( 1 + \frac{6(-1)^n}{n^2 \pi^2} \right)$$

$$\int\limits^{+\frac{a}{2}}_{-\frac{a}{2}} x \cos \left( \frac{ \pi x}{a} \right) \sin \left( \frac{2 \pi x}{a} \right) = \frac{8a^2}{9 \pi ^2}$$

_ _ _ _ _ _ _ _ _ _ _

$$\int\limits^{a}_{b} \frac{dx}{\sqrt{\left(a-x \right) \left(x-b \right)}} = \pi \text{ for a > b}$$

$$\int\limits^{a}_{b} \frac{dx}{x\sqrt{\left(a-x \right) \left(x-b \right)}} = \frac{ \pi}{\sqrt{ab}} \text{ for a > b > 0}$$

$$\int\limits^{\frac{\pi}{2}}_{- \frac{\pi}{2}} \frac{dx}{1+ y \sin x} = \frac{\pi}{\sqrt{1 – y^2}} \text{ for -1 < y < 1}$$

## Useful Integrals For Electromagnetism:

$$\int \frac{dx}{\sqrt{a^{2} – x^{2}}} = \text{arcsin} \, \frac{x}{a}$$

$$\int \frac{x dx}{\sqrt{a^{2} + x^{2}}} = \sqrt{a^{2} + x^{2}}$$

$$\int \frac{dx}{\sqrt{a^{2} +x^{2}}} = \text{ln} \, \left(x + \sqrt{a^{2} + x^{2}} \right)$$

$$\int \frac{dx}{a^{2} +x^{2}} = \frac{1}{a} \, \text{arctan} \, \frac{x}{a}$$

$$\int \frac{dx}{ \left( a^{2} + x^{2} \right)^{\frac{3}{2}}} = \frac{1}{a^{2}} \frac{x}{\sqrt{a^{2} +x^{2}}}$$

$$\int\frac{x \, dx}{ \left( a^{2}+x^{2} \right)^{\frac{3}{2}}} = \, – \frac{1}{\sqrt{a^{2} + x^{2}}}$$

$$\int \frac{dx}{\sqrt{ (x – a)^{2} + b^{2}}} = \text{ln} \, \frac{1}{(a – x) + \sqrt{(a-x)^{2} + b^{2}}}$$

$$\int \frac{(x – a) \, dx}{\left[ (x-a)^{2} + b^{2} \right]^{\frac{3}{2}}} = \, – \frac{1}{\sqrt{(x-a)^{2} + b^{2}}}$$

$$\int \frac{dx}{\left[ (x – a)^{2} + b^{2} \right]^{\frac{3}{2}}} = \frac{x – a}{b^{2} \sqrt{(x – a)^{2} +b^{2}}}$$

Back To Useful Mathematics References

##### Mini Physics

As the Administrator of Mini Physics, I possess a BSc. (Hons) in Physics. I am committed to ensuring the accuracy and quality of the content on this site. If you encounter any inaccuracies or have suggestions for enhancements, I encourage you to contact us. Your support and feedback are invaluable to us. If you appreciate the resources available on this site, kindly consider recommending Mini Physics to your friends. Together, we can foster a community passionate about Physics and continuous learning.

This site uses Akismet to reduce spam. Learn how your comment data is processed.