# Table Of Derivatives

### Rules On Differentiation

Product Rule:

$$\frac{d}{dx} \left( uv \right) = v \frac{du}{dx} + u \frac{dv}{dx}$$

,where u, v are functions of x

Quotient Rule:

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v\frac{du}{dx} – u \frac{dv}{dx}}{v^{2}}$$

Chain Rule:

$$\frac{d}{dx} \left[ f\left(u \right) \right] = \frac{d}{du} \left[ f \left( u \right) \right] \times \frac{du}{dx}$$

Integration By Parts:

$$\int \! u \, \text{d}v = uv-\int \! v \, \text{d}u$$

### Basic Properties of Derivatives

$$\frac{d}{dx}(cf(x)) = cf'(x)$$
$$\frac{d}{dx} (x^{n}) = nx^{n-1}$$
$$(fg)’ = f’g + fg’$$
$$\frac{d}{dx} (f(g(x))) = f'(g(x))g'(x)$$
$$\frac{d}{dx} \left( ln \, g(x) \right) = \frac{g'(x)}{g(x)}$$
$$(f(x) \pm g(x))’ = f'(x) \pm g'(x)$$
$$\frac{d}{dx}(c) = 0$$
$$\left( \frac{f}{g} \right)’ = \frac{f’g \, – fg’}{g^{2}}$$
$$\frac{d}{dx} \left( e^{g(x)} \right) = g'(x) e^{g(x)}$$

Note: c is any constant, n is any number

### Standard Derivatives:

#### Polynomials

$$\frac{d}{dx} (c) = 0$$
$$\frac{d}{dx}(x) = 1$$
$$\frac{d}{dx} (cx) = c$$
$$\frac{d}{dx} \left( x^{n} \right) = nx^{n-1}$$
$$\frac{d}{dx} \left( cx^{n} \right) = ncx^{n-1}$$

#### Trig. Functions

$$\frac{d}{dx} (\sin \, x) = \cos \, x$$
$$\frac{d}{dx} (\cos \, x) = \, – \sin \, x$$
$$\frac{d}{dx} (\tan \, x) = \sec^{2} \, x$$
$$\frac{d}{dx} (\sec \, x) = \sec \, x \, \tan \, x$$
$$\frac{d}{dx} (\csc \, x) = \, – \csc \, x \, \cot \, x$$
$$\frac{d}{dx} (\cot \, x) = \, – \csc^{2} \, x$$

#### Inverse Trig. Functions

$$\frac{d}{dx} (\sin^{-1} \, x) = \frac{1}{\sqrt{1 \, – x^{2}}}$$
$$\frac{d}{dx} (\cos^{-1} \, x) = \, – \frac{1}{\sqrt{1 \, – x^{2}}}$$
$$\frac{d}{dx} (\tan^{-1} \, x) = \frac{1}{1 + x^{2}}$$
$$\frac{d}{dx} (\sec^{-1} \, x) = \frac{1}{ |x| \sqrt{x^{2}-1}}$$
$$\frac{d}{dx} (\csc^{-1} \, x) = \, – \frac{1}{ |x| \sqrt{x^{2}-1}}$$
$$\frac{d}{dx} (\cot^{-1} \, x) = \, – \frac{1}{1+ x^{2}}$$

#### Exponential/Logarithm Functions

$$\frac{d}{dx} \left( a^{x} \right) = a^{x} \, ln \,(a)$$
$$\frac{d}{dx} \left( e^{x} \right) = e^{x}$$
$$\frac{d}{dx} (ln (x)) = \frac{1}{x}, \, \, x \gt 0$$
$$\frac{d}{dx} ( ln |x|) = \frac{1}{x}, \, \, x \ne 0$$
$$\frac{d}{dx} (log_{a} \, (x)) = \frac{1}{x \, ln \, a}, \, \, x \gt 0$$

#### Hyperbolic Trig. Functions

$$\frac{d}{dx} (\sinh \, x) = \cosh \, x$$
$$\frac{d}{dx} (\cosh \, x) = \sinh \, x$$
$$\frac{d}{dx} (\tanh \, x) = \text{sech}^{2} \, x$$
$$\frac{d}{dx} (\text{sech} \, x) = \, – \text{sech} \, x \, \tanh \, x$$
$$\frac{d}{dx} (\text{csch} \, x) = \, – \text{csch} \, x \, \coth \, x$$
$$\frac{d}{dx} (\coth \, x) = \, – \text{csch}^{2} \, x$$

Back To Useful Mathematics References

##### Mini Physics

As the Administrator of Mini Physics, I possess a BSc. (Hons) in Physics. I am committed to ensuring the accuracy and quality of the content on this site. If you encounter any inaccuracies or have suggestions for enhancements, I encourage you to contact us. Your support and feedback are invaluable to us. If you appreciate the resources available on this site, kindly consider recommending Mini Physics to your friends. Together, we can foster a community passionate about Physics and continuous learning.

This site uses Akismet to reduce spam. Learn how your comment data is processed.