Table Of Derivatives



Rules On Differentiation

Product Rule:

$$\frac{d}{dx} \left( uv \right) = v \frac{du}{dx} + u \frac{dv}{dx}$$

,where u, v are functions of x

Quotient Rule:

$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{v\frac{du}{dx} – u \frac{dv}{dx}}{v^{2}}$$

Chain Rule:

$$\frac{d}{dx} \left[ f\left(u \right) \right] = \frac{d}{du} \left[ f \left( u \right) \right] \times \frac{du}{dx}$$

Integration By Parts:

$$\int \! u \, \text{d}v = uv-\int \! v \, \text{d}u$$

Basic Properties of Derivatives

$$\frac{d}{dx}(cf(x)) = cf'(x)$$
$$\frac{d}{dx} (x^{n}) = nx^{n-1}$$
$$(fg)’ = f’g + fg’$$
$$\frac{d}{dx} (f(g(x))) = f'(g(x))g'(x)$$
$$\frac{d}{dx} \left( ln \, g(x) \right) = \frac{g'(x)}{g(x)}$$
$$(f(x) \pm g(x))’ = f'(x) \pm g'(x)$$
$$\frac{d}{dx}(c) = 0$$
$$\left( \frac{f}{g} \right)’ = \frac{f’g \, – fg’}{g^{2}}$$
$$\frac{d}{dx} \left( e^{g(x)} \right) = g'(x) e^{g(x)}$$

Note: c is any constant, n is any number

Standard Derivatives:

Polynomials

$$\frac{d}{dx} (c) = 0$$
$$\frac{d}{dx}(x) = 1$$
$$\frac{d}{dx} (cx) = c$$
$$\frac{d}{dx} \left( x^{n} \right) = nx^{n-1}$$
$$\frac{d}{dx} \left( cx^{n} \right) = ncx^{n-1} $$

Trig. Functions

$$\frac{d}{dx} (\sin \, x) = \cos \, x$$
$$\frac{d}{dx} (\cos \, x) = \, – \sin \, x$$
$$\frac{d}{dx} (\tan \, x) = \sec^{2} \, x$$
$$\frac{d}{dx} (\sec \, x) = \sec \, x \, \tan \, x$$
$$\frac{d}{dx} (\csc \, x) = \, – \csc \, x \, \cot \, x$$
$$\frac{d}{dx} (\cot \, x) = \, – \csc^{2} \, x$$

Inverse Trig. Functions

$$\frac{d}{dx} (\sin^{-1} \, x) = \frac{1}{\sqrt{1 \, – x^{2}}}$$
$$\frac{d}{dx} (\cos^{-1} \, x) = \, – \frac{1}{\sqrt{1 \, – x^{2}}}$$
$$\frac{d}{dx} (\tan^{-1} \, x) = \frac{1}{1 + x^{2}}$$
$$\frac{d}{dx} (\sec^{-1} \, x) = \frac{1}{ |x| \sqrt{x^{2}-1}}$$
$$\frac{d}{dx} (\csc^{-1} \, x) = \, – \frac{1}{ |x| \sqrt{x^{2}-1}}$$
$$\frac{d}{dx} (\cot^{-1} \, x) = \, – \frac{1}{1+ x^{2}}$$

Exponential/Logarithm Functions

$$\frac{d}{dx} \left( a^{x} \right) = a^{x} \, ln \,(a)$$
$$\frac{d}{dx} \left( e^{x} \right) = e^{x}$$
$$\frac{d}{dx} (ln (x)) = \frac{1}{x}, \, \, x \gt 0$$
$$\frac{d}{dx} ( ln |x|) = \frac{1}{x}, \, \, x \ne 0$$
$$\frac{d}{dx} (log_{a} \, (x)) = \frac{1}{x \, ln \, a}, \, \, x \gt 0$$

Hyperbolic Trig. Functions

$$\frac{d}{dx} (\sinh \, x) = \cosh \, x$$
$$\frac{d}{dx} (\cosh \, x) = \sinh \, x$$
$$\frac{d}{dx} (\tanh \, x) = \text{sech}^{2} \, x$$
$$\frac{d}{dx} (\text{sech} \, x) = \, – \text{sech} \, x \, \tanh \, x$$
$$\frac{d}{dx} (\text{csch} \, x) = \, – \text{csch} \, x \, \coth \, x$$
$$\frac{d}{dx} (\coth \, x) = \, – \text{csch}^{2} \, x$$

Back To Useful Mathematics References



Mini Physics

Administrator of Mini Physics. If you spot any errors or want to suggest improvements, please contact us. If you like the content in this site, please recommend this site to your friends!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.