Some useful references on Trigonometry:

Basic Trigonometric Identities:

$$\begin{aligned}\sin^{2}{\theta} + \cos^{2} \theta &= 1 \\ 1 + \tan^{2} \theta &= \sec^{2} \theta \\ 1 + \cot^{2} \theta &= \csc^{2} \theta \end{aligned}$$

Compound Angle Relations:

$$\begin{aligned} \sin{\left( A \pm B \right)} &= \sin{A}\cos{B} \pm \cos{A}\sin{B} \\ \cos{\left( A \pm B \right)} &= \cos{A}\cos{B} \mp \sin{A}\sin{B} \\ \tan{\left(A \pm B \right)} &= \frac{\tan{A} \pm \tan{B}}{1 \mp \tan{A}\tan{B}} \end{aligned}$$

Product To Sum Formula:

$$\begin{aligned} \sin{u}\sin{v} &= \frac{1}{2}\left[ \cos{\left(u-v \right)} – \cos{\left(u+v \right)} \right] \\ \cos{u}\cos{v} &= \frac{1}{2}\left[ \cos{\left(u-v \right)} + \cos{\left(u+v \right)} \right] \\ \sin{u}\cos{v} &= \frac{1}{2}\left[ \sin{\left(u+v \right)} + \sin{\left(u-v \right)} \right] \\ \cos{u}\sin{v} &= \frac{1}{2}\left[ \sin{\left(u+v \right)} – \sin{\left(u-v \right)} \right] \end{aligned}$$

Double Angle Formulae:

$$\begin{aligned} \sin{2A} &= 2\sin{A}\cos{A} \\ \\ \cos{2A} &= \cos^{2}{A}-\sin^{2}{A} \\ &= 2 \cos^{2}{A}-1 \\ &= 1-2\sin^{2}{A} \\ \\ \tan{2A} &= \frac{2\tan{A}}{1-\tan^{2}{A}} \end{aligned}$$

Factor Formulae:

$$\begin{aligned} \sin{S}+\sin{T} &= 2\sin{\frac{S+T}{2}}\cos{\frac{S-T}{2}} \\ \sin{S}-\sin{T} &= 2\cos{\frac{S+T}{2}}\sin{\frac{S-T}{2}} \\ \cos{S}+\cos{T} &= 2\cos{\frac{S+T}{2}}\cos{\frac{S-T}{2}} \\\cos{S}-\cos{T} &= -2\sin{\frac{S+T}{2}}\sin{\frac{S-T}{2}} \end{aligned}$$

Some Extra Things:

$$\begin{aligned} \cos{x} &= \frac{e^{ix}+e^{-ix}}{2} \\ \sin{x} &= \frac{e^{ix}-e^{-ix}}{2i} \end{aligned}$$


$$\begin{aligned} a\cos{\theta} \pm b\sin{\theta} &= R\cos{\left( \theta \mp \alpha \right)} \\ a\sin{\theta} \pm b \cos{\theta} &= R \sin{\left(\theta \pm \alpha \right)} \end{aligned}$$

$R = \sqrt{a^{2}+b^{2}}$ and,
$\tan{\alpha} = \frac{b}{a}$ and,
and a > 0, b > 0, α is acute

The maximum value is R which occurs when $\cos / \sin{\left( \theta \pm \alpha \right)} = 1$
The minimum value is -R which occurs when $\cos / \sin{\left( \theta \pm \alpha \right)} = -1$

Even/Odd Functions

$$\begin{aligned}\sin{\left(-\theta \right)} &=  -\sin{\theta} \\ \cos{\left( -\theta \right)} &= \cos{\theta} \\ \tan{\left( -\theta \right)} &= -\tan{\theta} \end{aligned}$$
$$\begin{aligned}\csc{\left(-\theta \right)} &=  -\csc{\theta} \\ \sec{\left( -\theta \right)} &= \sec{\theta} \\ \cot{\left( -\theta \right)} &= -\cot{\theta} \end{aligned}$$

Cofunction Identities

$$\begin{aligned}\sin{\left(\frac{\pi}{2}-\theta \right)} &=  \cos{\theta} \\ \csc{\left( \frac{\pi}{2}-\theta \right)} &= \sec{\theta} \\ \tan{\left( \frac{\pi}{2}-\theta \right)} &= \cot{\theta} \end{aligned}$$
$$\begin{aligned}\cos{\left(\frac{\pi}{2}-\theta \right)} &=  \sin{\theta} \\ \sec{\left( \frac{\pi}{2}-\theta \right)} &= \csc{\theta} \\ \cot{\left( \frac{\pi}{2}-\theta \right)} &= \tan{\theta} \end{aligned}$$


Back To Useful Mathematics References

Mini Physics

As the Administrator of Mini Physics, I possess a BSc. (Hons) in Physics. I am committed to ensuring the accuracy and quality of the content on this site. If you encounter any inaccuracies or have suggestions for enhancements, I encourage you to contact us. Your support and feedback are invaluable to us. If you appreciate the resources available on this site, kindly consider recommending Mini Physics to your friends. Together, we can foster a community passionate about Physics and continuous learning.

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.