Vector Analysis



4 vector operations

Addition of two vectors

  • Commutative: $\textbf{A + B = B + A}$
  • Associative: $\textbf{(A + B) + C = A + (B + C)}$

Multiplication by a scalar

  • Distributive: $a(\textbf{A + B}) = a\textbf{A} + a\textbf{B}$, where a is a scalar

Dot product of two vectors (Also known as scalar product)

  • $\textbf{A . B} = \left|A\right|\left|B\right|cos \theta$
  • Commutative: $\textbf{A . B = B . A}$
  • Distributive: $\textbf{A . (B + C) = A.B + A.C}$
  • Geometrically, A . B is product of A times projection of B along A.
  • For any vector A, $\textbf{A . A }= \left|\textbf{A}\right|^{2}$
  • If A and B are perpendicular, then $\textbf{A.B = 0}$

Cross product of two vectors (Also known as vector product)

  • $\textbf{A} \times \textbf{B} = \left|\textbf{A}\right|\left|\textbf{B}\right|sin \theta \hat{\textbf{n}}$, where $\hat{\textbf{n}}$ is the unit vector pointing perpendicularly to the plane of A and B.
  • Distributive: $\textbf{A} \times \textbf{(B + C) = (A} \times \textbf{B) + (A} \times \textbf{C)}$
  • Not commutative: $(\textbf{B} \times \textbf{A}) = – (\textbf{A} \times \textbf{B})$
  • Geometrically, $ \left|\textbf{A} \times \textbf{B}\right|$ is area of parallelogram generated by A and B.
  • If A and B are parallel, then $\textbf{A} \times \textbf{B} = \textbf{0}$

 

Triple product

Scalar triple product

  • $\textbf{A} . (\textbf{B} \times \textbf{C})$
  • Geometrically, $\left|\textbf{A} . (\textbf{B} \times \textbf{C})\right|$ is the volume of the parallelepiped generated by A, B and C, since $ \left|\textbf{B} \times \textbf{C}\right|$ is area of base, and $ \left|\textbf{A}cos \theta\right|$ is the altitude.
  • $\textbf{A} . (\textbf{B} \times \textbf{C}) = \textbf{B} . (\textbf{C} \times \textbf{A}) = \textbf{C} . (\textbf{A} \times \textbf{B})$

Vector triple product

  • $\textbf{A} \times (\textbf{B} \times \textbf{C})$
  • BAC-CAB rule: $\textbf{A} \times (\textbf{B} \times \textbf{C}) = \textbf{B} (\textbf{A} . \textbf{C}) – \textbf{C} (\textbf{A} . \textbf{B})$
  • Note that: $(\textbf{A} \times \textbf{B}) \times \textbf{C} = – \textbf{C} \times (\textbf{A} \times \textbf{B}) = – \textbf{A} (\textbf{B} . \textbf{C}) + \textbf{B} (\textbf{A} . \textbf{C})$

Operator $\nabla$

$\nabla = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$

Gradient Of T

$\nabla T = \frac{\partial T}{\partial x} \hat{x} + \frac{\partial T}{\partial y} \hat{y} + \frac{\partial T}{\partial z} \hat{z} $

  • The gradient $\nabla T$ points in direction of maximum increase of the function T.
  • The magnitude $\left| \nabla T \right|$ gives the slope (rate of increase) along this maximal direction.

Divergence

$\nabla . v = \frac{\partial v_{x}}{\partial x} + \frac{\partial v_{y}}{\partial y} + \frac{\partial v_{z}}{\partial z}$

Curl

$\nabla \times F =$   8e818d1115abc22b39e736e9c704ed93

$\nabla \times F = (\frac{\partial F_{z}}{\partial y} – \frac{\partial F_{y}}{\partial z}) \textbf{i} + (\frac{\partial F_{x}}{\partial z} – \frac{\partial F_{z}}{\partial x}) \textbf{j} + (\frac{\partial F_{y}}{\partial x} – \frac{\partial F_{x}}{\partial y}) \textbf{j}$

Rules:

Sum rule:

  • $\nabla (f + g) = \nabla f + \nabla g$
  • $\nabla . (A + B) = (\nabla . A) + (\nabla . B)$
  • $\nabla \times (A + B) = (\nabla \times A) + (\nabla \times B)$

Rule for multiplying by a constant:

  • $\nabla (kf) = k \nabla f$
  • $\nabla . (kA) = k(\nabla . A)$
  • $\nabla \times (kA) = k (\nabla \times A)$

Product Rule:

Two for gradients:

  • $\nabla (fg) = f \nabla g + g \nabla f$
  • $\nabla (A . B) = A \times (\nabla \times B) + B \times (\nabla \times A) + (A . \nabla) B + (B . \nabla) A$

Two for divergence:

  • $\nabla . (fA) = f (\nabla . A) + A . (\nabla f)$
  • $\nabla (A \times B) = B . (\nabla \times A) – A . (\nabla \times B)$

Two for curl:

  • $\nabla \times (fA) = f (\nabla \times A) – A \times (\nabla f)$
  • $\nabla \times (A \times B) = (B . \nabla) A – (A . \nabla) B + A (\nabla . B) – B (\nabla . A)$

 

Quotient Rule

  • $\nabla (\frac{f}{g}) = \frac{ g\nabla f – f \nabla g}{g^{2}}$
  • $\nabla . (\frac{A}{g}) = \frac{g(\nabla . A) – A . (\nabla g)}{g^{2}}$
  • $\nabla \times (\frac{A}{g}) = \frac{g (\nabla \times A) + A \times (\nabla g)}{g^{2}}$

 

Second Derivatives

Laplacian

  • $\nabla ^{2} T = \nabla . (\nabla T) = \frac{\partial ^{2}T}{\partial x^{2}} + \frac{\partial ^{2} T}{\partial y^{2}} + \frac{\partial ^{2}T}{\partial z^{2}}$

Curl of a gradient is always zero

  • $\nabla \times (\nabla T) = 0$

Divergence of a curl is always zero

  • $\nabla . (\nabla \times v) = 0$

Curl-of-curl

  • $\nabla \times (\nabla \times v) = \nabla (\nabla . v) – \nabla ^{2} v$

Vector derivatives in cylindrical and spherical coordinates

Back To Useful Mathematical Reference



Mini Physics

As the Administrator of Mini Physics, I possess a BSc. (Hons) in Physics. I am committed to ensuring the accuracy and quality of the content on this site. If you encounter any inaccuracies or have suggestions for enhancements, I encourage you to contact us. Your support and feedback are invaluable to us. If you appreciate the resources available on this site, kindly consider recommending Mini Physics to your friends. Together, we can foster a community passionate about Physics and continuous learning.



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.