Steps For Solving First Order Differential Equation


1) TRANSFORM the differential equation to the form: 

$$\frac{dy}{dx} = f \left( x,y \right)$$

2) Test for Linear form: 

$$f \left( x,y \right) = g \left( x \right) y + h \left( x \right)$$

3) Test for Bernoulli equation: 

$$f \left( x,y \right) = g \left( x \right) y + h \left( x \right) y^{a}$$

4) Test for Variable separable: 

$$f \left( x,y \right) = g \left( x \right) h \left( y \right)$$

5) Test for Homogeneity: 

$$f \left( x,y \right) = f \left( tx, ty \right)$$

6) Test for Exactness

Back To First Order Differential Equations

Sharing is caring:
Mini Physics

Administrator of Mini Physics. If you spot any errors or want to suggest improvements, please contact us.

Leave a Comment