UY1: Centre Of Mass Of A Cone

centre of mass of cone

Find the centre of mass of an uniform cone of height $h$ and radius $R$. Let the density of the cone be $\rho$.

It is obvious from the diagram that the x and y components of the centre of mass of a cone is 0:

$$\begin{aligned} x_{CM} &= 0 \\ y_{CM} &= 0 \end{aligned}$$

Hence, we just need to find $z_{CM}$. We will need to use the equation for the centre of mass:

$$z_{CM} = \frac{1}{M} \int z \, dm$$

During the computation, we will need this relation (obtained from similar triangles as seen from the diagram):

$$\frac{r}{z} = \frac{R}{h}$$

We have to find $dm$:

$$\begin{aligned} dm &= \rho \left( \pi r^{2} \right) \, dz \\ &= \rho \pi \frac{R^{2}}{h^{2}} z^{2} \, dz \end{aligned}$$

Then, to find $M$:

$$\begin{aligned} M &= \int \, dm \\ &= \int\limits_{0}^{h} \rho \pi \frac{R^{2}}{h^{2}} z^{2} \, dz \\ &= \rho \pi \frac{R^{2}}{h^{2}} \frac{z^{3}}{3} \Big|_{0}^{h} \\ &= \rho \pi R^{2} \frac{h}{3} \end{aligned}$$

Now, we have enough information to compute $z_{CM}$.

$$\begin{aligned} z_{CM} &= \frac{1}{M} \int z \, dm \\ &= \frac{1}{M} \int\limits_{0}^{h} z \rho \pi \frac{R^{2}}{h^{2}} z^{2} \, dz \\ &= \frac{\rho \pi}{M} \frac{R^{2}}{h^{2}} \frac{z^{4}}{4} \Big|_{0}^{h} \\ &= \frac{3}{\rho \pi R^{2}h} \rho \pi \frac{R^{2}}{h^{2}}\frac{h^{4}}{4} \\ &= \frac{3}{4} h \end{aligned}$$

Next: Motion Of A System Of Particles

Previous: Centre Of Mass Of A Right-Angle Triangle

Back To Mechanics (UY1)

Mini Physics

As the Administrator of Mini Physics, I possess a BSc. (Hons) in Physics. I am committed to ensuring the accuracy and quality of the content on this site. If you encounter any inaccuracies or have suggestions for enhancements, I encourage you to contact us. Your support and feedback are invaluable to us. If you appreciate the resources available on this site, kindly consider recommending Mini Physics to your friends. Together, we can foster a community passionate about Physics and continuous learning.

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.